ICLA!	SSIFIE				K G B ∙85-40			F/G 1	.9/1	NL.	
		*									
						4					
							END FILMES SOTIC				

MICROCOPY RESOLUTION TEST CHART

IRESET PROPERTIES TESTS

K.G. Bell K.W. Havens

New Mexico Engineering Research Institute University of New Mexico Albuquerque, New Mexico 87131

December 1985

Final Report

Approved for public release; distribution unlimited.

UTC FILE COPY

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command
Kirtland Air Force Base, NM 87117-6008

This final report was prepared by the New Mexico Engineering Research Institute, Albuquerque, New Mexico, under Contract F29601-81-C-0013, Job Order 88091379 with the Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico. Miss Patricia Kearney (NTEDS) was the Laboratory Project Officer-in-Charge.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

This report has been authored by a contractor of **the United States** Government. Accordingly, the United States Government **retains a nonexclusive**, royalty-free license to publish or reproduce the material contained herein, or allow others to do so, for the United States Government purposes.

This report has been reviewed by the Public Affairs Office and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

If your address has changed, if you wish to be **removed from** our mailing list, or if your organization no longer employs the **addressee**, **please** notify AFWL/NTE, Kirtland AFB, NM 87117-6008 to help us maintain a current mailing lsit.

This technical report has been reviewed and is approved for publication.

Patricia Kearney

Project Officer

J.D. M. Cares T.D. McCARSON

Lt Col, USAF Chief, Technology Branch FOR THE COMMANDER

CARL L. DAVIDSON Colonel, USAF

Chief, Civil Engineering Research Div

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR NOTICE ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.

AD-A164393

SECURITY	LASSIFICATIO	ON OF THIS PA	-00						
				REPORT DOCUME	NTATION PAG	E			
18. REPORT SECURITY CLASSIFICATION UNCLASSIFIED				16. RESTRICTIVE MARKINGS					
28. SECURITY CLASSIFICATION AUTHORITY				3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution					
26. DECLAS	SSIFICATION/	DOWNGRADI	NG SCHED	ULE	unlimited.				
	ming organ 9.22-TA9	-64	ORT NUM	BER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S) AFWL-TR-85-40				
New Mo	exico Engrch Insti	•	ATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONI				
		and ZIP Code)		<u> </u>	7b. ADDRESS (City,) (Y	
		sity of N ew Mexico			Kirtland AFB, NM 87117-6008				
	F FUNDING	SPONSORING		86. OFFICE SYMBOL	9. PROCUREMENT	NSTRUMENT ID	ENTIF	CATION N	MBER
OHGAN	IZATION			(If applicable)	F29601-81-0	-0013			
8c. ADDRE	SS (City, State	and ZIP Code)		<u> </u>	10. SOURCE OF FU	NDING NOS.			
					PROGRAM ELEMENT NO.	PROJECT NO.		TASK NO.	WORK UNIT
11. TITLE	Include Securit	ty Classification	,		62601F	8809	13		79
		IES TESTS			<u> </u>	<u> </u>			
Bell,	Kenneth	(S) G. and Ha	vens,	Kenneth W.					
13a TYPE	OF REPORT	1	BOM 1.1		14. DATE OF REPORT		,	15. PAGE C	OUNT
Final FROM 1Jul83 TO 30Apr8			1300 0000			38			
17.	COSATI	CODES		18. SUBJECT TERMS (C	ontinue on reverse if ne	ecessary and identi	ify by b	lock number	,
FIELD	GROUP	SUB. G	SR.	Castable ANFO					
19	01			Explosive, IF	RESET				
14 02 Large charge 19. ABSTRACT (Continue on reverse if necessary and identify by block number)									
IRESET A-1 and A-1a are castable explosives that hold promise as possible replacements for ammonium nitrate and fuel oil (ANFO) in large charges. This report covers the results of three rate stick tests conducted to determine the detonation characteristics of the IRESET explosives in large-diameter charges.									
20. DISTRI	BUTION/AVA	ILABILITY OF	ABSTRAC	ST.	21. ABSTRACT SEC	JRITY CLASSIFI	CATIO	N	
UNCLASSI	FIED/UNLIMI	TEO 🎗 SAME	UNCLASSIFIED						
228. NAME OF RESPONSIBLE INDIVIDUAL					<u> </u>				
	of RESPONS		UAL		22b TELEPHONE N (Include Area Ca (505) 844-0	ide)	1	FFICE SYM	80L

CONTENTS

Section		Page
I	INTRODUCTION	نيون 1
II	TEST DESIGN	2
III	TEST RESULTS	7
IA	CONCLUSIONS AND RECOMMENDATIONS	13
	APPENDIXES	
	A. RESISTANCE PROBE DATA	15
	B. TABULATED TOA DATA	21

Accesion For					
NTIS	CRA&I	S S			
DTIC	TAB				
Unanno	unced				
Justific	ation				
By Distribution /					
^	Availability Codes				
Dist	Avail a. d / or Special				
A-1					

ILLUSTRATIONS

<u>Figure</u>		Page
1	Rate stick configuration	3
2	Resistance probe	4
3	Time-of-arrival plot for Test 1	8
4	Time-of-arrival plot for Test 2	9
5	Time-of-arrival plot for Test 3	10
6	Displacement versus time for Tests 1 and 2	11
7	Displacement versus time for Test 3	12
	TABLES	
Table		Page
1	IRESET composition a and performance data	1
2	Data atial 2 min leasting	6

I. INTRODUCTION

IRECO Chemicals, Inc., has developed a castable explosive, IRESET, that can be placed by pumping and sets to a hard, water-resistant charge. IRESET can be obtained in a variety of compositions. Two of these, IRESET A-1 and A-1a, hold promise as possible replacements for ammonium nitrate and fuel oil (ANFO) for use in large (544 metric tons [600 tons] or greater) high-explosive tests.

Because IRESET A-1 and A-1a are still in the developmental stage, not much is known about the detonation characteristics of the two compositions when they are used in large charges. Explosive compositions and performance data provided by IRECO are shown in Table 1.

To obtain data on the performance of large-diameter IRESET charges, three rate sticks were fabricated and used to test the explosive. In this report the rate stick design, the test design, the test instrumentation, and the test results are described.

TABLE 1. IRESET COMPOSITION AND PERFORMANCE DATA

Properties	Composition A-1	Composition A-la	
Density, g/cm ³	1.42	1.26	
Velocity, m/s	2900 (25.4-cm dia.)	5300 (25-cm dia.)	
	3500 (40.6-cm dia.)	5800 (40-cm dia.)	
		6400 (90-cm dia.)	
Energy, cal/g	842	842	
Compression strength	345 kPa (50 lb/in ²)	<0.013 %/min creep at 731 kPa (106 lb/in²)	
Critical diameter (detonate/fail), cm	25.4/20.3	15	
Minimum booster ^b (detonate/fail), g	454/227	170	

 $^{^{}a}$ Ingredients of IRESET are ammonium nitrate, $H_{2}O$, and oils.

bValues given for Pentolite 50/50.

II. TEST DESIGN

Two rate sticks were designed for use in determining the steady-state detonation velocity of IRESET A-1 and a third for determining the steady-state detonation velocity of IRESET A-1a. The first rate stick was a 457.2-mm (18-in)-diameter, 3.1-m (10-ft)-long steel pipe with a wall thickness of 9.7 mm (0.38 in). The steel pipe provided containment for the charge. The second rate stick was a 609.6-mm (24-in)-diameter sonotube container, which provided minimal containment. The third was a 914.4-mm (36-in)-diameter, 6.1-m (20-ft)-long steel pipe with a wall thickness of 9.7 mm (0.38 in). The container design is shown in Figure 1.

The charge containers were shipped to IRECO to be **filled**. The IRESET was cast into the containers, and the containers were returned to NMERI for testing.

In the tests, the detonation velocities of the explosives in the three rate sticks were to be measured to determine whether they reached steady-state. The instrumentation used to measure the velocity in the first two rate sticks was identical. Three lines of gages, each line containing 29 shorting pins and a resistance probe, were used in each charge. The gages were enclosed in stainless steel pipes that ran the length of the charge.

The shorting pins were spaced 25.4 mm (1 in) apart in the interval 0 to 0.31 m (0 to 1 ft) from the bottom of the detonator well; 50.8 mm (2 in) apart in the interval 0.31 to 0.61 m (1 to 2 ft) from the bottom; 102 mm (4 in) apart from 0.01 to 0.91 m (2 to 3 ft); 152.4 mm (6 in) apart from 0.91 to 1.22 m (3 to 4 ft); and 304.8 mm (12 in) apart from 1.22 to 3 m (4 to 10 ft). This pin arrangement provided a high definition of the early-time environment.

The resistance probes were of the type that provides a continuous record of the velocity. The design of the resistance probe is shown in Figure 2.

The instrumentation for the third rate stick was different from that used on the first two in that only shorting pins were used to measure the velocity. Five lines of gages, each line containing either 37 or 42 shorting pins, were used in the third charge. The gages were enclosed in thin-walled stainless steel tubing, which ran the length of the charge.

Figure 1. Rate stick configuration.

 $R_R = 20 \text{ kg}$ $R_C = 42.1 \text{ g}$ $R_L = 1.5 \text{ kg}$ $R_G = 35.4 \text{ g}$

Figure 2. Resistance probe.

The snorting pin spacing for the third rate stick is shown in Table 2. This pin arrangement provided a high definition of the early- and late-time environments.

To contain the blast and the shrapnel, the first two rate sticks were placed in pits approximately 3 m (10 ft) deep and covered with a soil overburden. The third rate stick was placed in a pit approximately 6 m (20 ft) deep and covered with a soil overburden. A cast booster, 203.2 mm (8 in) in diameter and 50.8 mm (2 in) thick, ignited in seven places, was used to detonate each charge.

TABLE 2. RATE STICK 3, PIN LOCATIONS

D:-		Ga	ge range, mm (in)	
Pin Number	A	В	С	D	E
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 39 40 40 40 40 40 40 40 40 40 40 40 40 40	0 76.2 (3) 152.4 (6) 228.6 (9) 304.8 (12) 381.0 (15) 457.2 (18) 533.4 (21) 609.6 (24) 685.8 (27) 762.0 (30) 838.2 (33) 914.4 (36) 1066.8 (42) 1219.2 (48) 1371.6 (54) 1524.0 (60) 1676.4 (66) 1828.8 (72) 2133.6 (84) 2438.4 (96) 2743.2 (108) 3048.0 (120) 3200.4 (126) 3352.8 (132) 3657.6 (144) 3810.0 (150) 3962.4 (156) 4267.2 (168) 4419.6 (174) 4572.0 (180) 4876.8 (192) 5029.2 (198) 5181.6 (204) 5486.4 (216) 5638.8 (222) 5791.2 (228)	0 25.4 (1) 101.6 (4) 177.8 (7) 254.0 (10) 304.8 (12) 330.2 (13) 406.4 (16) 482.6 (19) 558.8 (22) 609.6 (24) 635.0 (25) 711.2 (28) 787.4 (31) 863.6 (34) 914.4 (36) 965.2 (38) 117.6 (44) 1219.2 (48) 1270.0 (50) 1422.4 (56) 1524.0 (60) 1574.8 (62) 1727.2 (68) 1828.8 (72) 1727.2 (68) 1828.8 (72) 1733.6 (84) 2235.2 (88) 2438.4 (96) 2540.0 (100) 2743.2 (108) 2844.8 (112) 3048.0 (120) 3352.8 (132) 3057.6 (144) 3962.4 (156) 4267.2 (168) 4572.0 (180) 4876.8 (192) 5181.6 (204) 5486.4 (216)	0 50.8 (2) 127.0 (5) 203.2 (8) 279.4 (11) 304.8 (12) 355.6 (14) 431.8 (17) 508.0 (20) 584.2 (23) 609.6 (24) 660.4 (26) 736.6 (29) 812.8 (32) 889.0 (35) 914.4 (36) 1016.0 (40) 1168.4 (46) 1219.2 (48) 1320.8 (52) 1473.2 (58) 1524.0 (60) 1625.6 (64) 1778.0 (70) 1828.8 (72) 2032.0 (80) 2133.6 (84) 2336.8 (92) 2438.4 (96) 2641.6 (104) 2743.2 (108) 2946.4 (116) 3048.0 (120) 3352.8 (132) 3657.6 (144) 3962.4 (156) 4267.2 (168	0 76.2 (3) 152.4 (6) 228.6 (9) 304.8 (12) 381.0 (15) 457.2 (18) 533.4 (21) 609.6 (24) 685.8 (27) 762.0 (30) 838.2 (33) 914.4 (36) 1066.8 (42) 1219.2 (48) 1371.6 (54) 1524.0 (60) 1676.4 (66) 1828.8 (72) 2133.6 (84) 2438.4 (96) 2743.2 (108) 3048.0 (120) 3352.8 (132) 3505.2 (138) 3657.6 (144) 3962.4 (156) 4114.8 (162) 4267.2 (168) 4572.0 (180) 4724.4 (186) 4876.8 (192) 5181.6 (204) 5334.0 (210) 5486.4 (216) 5791.2 (228) 5943.6 (234)	0 304.8 (12) 609.6 (24) 914.4 (36) 1219.2 (48) 1524.0 (60) 1828.8 (72) 2133.6 (84) 2438.4 (96) 2743.2 (108) 3048.0 (120) 3352.8 (132) 3657.6 (144) 3810.0 (150) 3962.4 (156) 4114.8 (162) 4267.2 (168) 4419.6 (174) 4572.0 (180) 4673.6 (184) 4775.2 (188) 4876.8 (192) 4878.4 (196) 5080.0 (200) 5181.6 (204) 5257.8 (207) 5334.0 (210) 5410.2 (213) 5486.4 (216) 5562.6 (219) 5638.8 (222) 5689.6 (224) 5740.4 (226) 5791.2 (228) 5842.0 (230) 5892.8 (232) 5943.6 (234)
42		5791.2 (228)	5791.2 (228)		•••

Note: Each line contained either 37 or 42 shorting pins.

III. TEST RESULTS

The pin box and the Time-of-Arrival Data System I (TOADS I) were used to record the shorting pin data for Test 1. The resistance probe data were recorded on analog tape. Data recovery from this test was poor in that the TUADS I did not receive the proper signal from the shorting pins. The trigger voltage was provided by an external circuit, and because of the shorting pin configuration (common ground), this circuit gave a negative pulse to the TOADS. Data were obtained, however, from the pin box and the resistance probes.

For Test 2 the external trigger circuit was modified for use with common ground snorting pins. The pin box and TOADS I and II were used to record the data. Data recovery from all three systems was good. The resistance probes were recorded on an analog tape.

The data from the resistance probes used on Tests 1 and 2 were not legible. Apparently the capacitance of the long lines caused an early-time voltage rise, and the result was a nonlinear circuit response.

The shorting pin data for Test 3 were recorded on TOADS II and TOADS III. Data recovery from both systems was good.

The TUA plots with all the data available for Tests 1, 2, and 3 are shown in Figures 3, 4, and 5, respectively. The raw data traces are shown in Appendix A and the tabulated TUA data in Appendix B.

Figure 6 is a displacement-versus-time plot for Tests 1 and 2. This plot shows that the detonation velocity was higher in the unconfined than in the confined rate stick. In neither test was the steady-state velocity reached.

A displacement-versus-time plot for Test 3 is snown in Figure 7. This plot snows that the detonation wave reached a steady-state velocity of 0,453 m/s (21,170 ft/s) within 2.43 m (8 ft) and continued at that velocity for the remainder of the test.

Figure 3. Time-of-arrival plot for Test 1.

Figure 4. Time-of-arrival plot for Test 2.

Figure 5. Time-of-arrival plot for Test 3.

Figure 6. Displacement versus time for Tests 1 and 2.

Figure 7. Displacement versus time for Test 3.

IV. CUNCLUSIONS AND RECOMMENDATIONS

The test results show that the detonation velocity of the unconfined charge employed in Test 2 was greater than that of the confined charge used in Test 1. The difference in velocities is due to the much larger diameter of the unconfined charge. However, neither rate stick reached a steady-state velocity as indicated by the slopes of the displacement history curves for Tests 1 and 2 (Fig. 6), which were still increasing when the detonation front reached the end of the charge. The conclusion is that the rate sticks used in Tests 1 and 2 were not long enough to allow the detonation waves to reach steady-state velocity.

In Test 3, steady-state velocity was obtained in a confined environment as indicated by figure 7. The rate stick used in Test 3 was twice as long as that used in Test 1. The diameter of the charge was also increased for this test so that more information could be obtained on the detonation characteristics of large charges of IRESET.

On the basis of the results of Test 3, it appears that IRESET warrants additional investigation. IRESET A-la is potentially useful for large explosive tests when an explosive material that can be cast into a form is required. Because IRESET hardens after casting, the form could be removed before the explosive was detonated. The wave deformities generated by the support containers required for currently used explosives would thus be eliminated.

APPENDIX A
RESISTANCE PROBE DATA

APPENDIX B TABULATED TOA DATA

Test	Page
Test 1	22
Test 2	23
Test 3	27

```
Shot 1 Pin Data
IRESET-A, 18-in, R (in) vs. T (ms):
                 0.0100000
                                Y=
                                        0.000000
         X=
                                        1.0000000
2
                 0.0102000
                                Y=
         X=
3
                                        2.0000000
         X=
                 0.0102000
                                Y=
 4
                                        3.0000000
                 0.0102000
                                Y=
         X=
5
                 0.0095000
                                Y=
                                        4.0000000
         X=
6
         X=
                 0.0966000
                                Y=
                                        5.0000000
7
                 0.1032000
                                Y=
                                        6.0000000
         X=
3
                 0.1092000
                                Y=
                                        7.0000000
         X=
 9
         X=
                                Y=
                                        3.0000000
                 0.1146000
10
                 0.1220000
         X=
                                Y=
                                        9.0000000
                 0.1294000
11
         X=
                                Y=
                                       10.0000000
12
         X=
                 0.1320000
                                Y=
                                       11.0000000
13
                 0.1424000
                                       12.0000000
         X=
                                Y=
14
         X=
                 0.1540000
                                Y=
                                       14.0000000
15
         X=
                 0.1550000
                                Y=
                                       14.0000000
16
         X=
                 0.1020000
                                Y=
                                       10.0000000
17
         X=
                 0.1924000
                                Y=
                                       20.0000000
18
         X=
                 0.2113000
                                Y=
                                       22.0000000
                                       24.0000000
12
         X=
                 0.2242000
                                Y=
20
         X=
                 0.2510000
                                Y=
                                       28.0000000
21
         X=
                 0.2772000
                                Y=
                                       32.0000000
                 0.3032000
                                       35.0000000
22
         X≈
                                7=
23
         X=
                 0.3806000
                                Y=
                                       43.0000000
24
         X=
                 0.4580000
                                Y≖
                                       60.000000
25
         X=
                 0.5335000
                                YΞ
                                       72.0000000
26
         X=
                                Y=
                                       84.0000000
                 0.6106000
27
         X=
                 0.4840000
                                Y=
                                       24.0000000
28
         X=
                 0.7534000
                                Y=
                                      108.0000000
29
         X=
                 0.8300000
                                Y=
                                      120.0000000
```

```
Shot 2, TOADS I Data
IRESET-A, 24-in, R (in) vs. T (ms):
                                       0.0000000
         X=
                0.0593000
                               Y=
                                       1.0000000
 2
         X=
                0.0614000
                               Y=
 3
                               Υ=
                                       2.0000000
                0.0642000
         X=
                                       3.0000000
 4
                 0.0674000
                                Υ=
         X=
                                       5.0000000
                                γ=
 5
         X=
                0.0814000
ن
7
                                       4.0000000
         X=
                0.0874000
                                Y=
                                       8.000000
                 0.1004000
                                Y=
         X=
                                      11.0000000
 8
                 0.1205000
                                Υ=
         X=
 9
                 0.1281000
                                Y=
                                      12.0000000
         X=
                                      14.0000000
                                Y=
10
         X=
                 0.1462000
                                      14.0000000
                                γ=
                 0.1581000
11
         X=
                                      22.0000000
                                γ=
12
         X=
                 0.1952000
                                      24.0000000
                 0.2203000
                                Y=
13
         X =
                                      28.0000000
                 0.2457000
                                Y=
14
         X=
                                Y=
                                      34.0000000
                 0.2989000
         X=
15
                 0.5792000
                                Y≖
                                      34.0000000
         X=
16
                                Y=
                                      96.0000000
                 0.6443000
17
         X=
                 0.7759000
                                Y=
                                      120.0000000
18
         X=
```

```
Shot 2, TOADS II Data
IRESET-A, 24-in, R (in) vs. T (ms):
                 0.0587000
                                       0.0000000
         X=
 2
         X=
                0.0621000
                                Y=
                                        1.0000000
 3
         X=
                 0.0659000
                                Y=
                                       2.0000000
 4
                0.0702000
                                       3.0000000
         X=
                                Y=
 5
         X=
                 0.0367000
                                Υ=
                                       4.0000000
 6
         X=
                0.0793000
                                Y=
                                       5.0000000
 7
         XΞ
                0.0953000
                                Y=
                                       6.000000
                                Y=
 8
                0.1037000
         X=
                                       7.0000000
 9
         X=
                0.1217000
                                Y=
                                       9.0000000
10
         X=
                0.1289000
                                Y=
                                      10.0000000
                0.1353000
11
         X=
                                Y=
                                      11.0000000
                0.1433000
12
         X=
                                Y=
                                      12.0000000
13
         X=
                0.1741000
                                Y=
                                      14,0000000
14
                0.1993000
         X=
                                Y=
                                      20.0000000
15
         X=
                0.2149000
                                Y=
                                      22.0000000
                                      24.0000000
                0.2325000
16
         X=
                                Y=
                0.2591000
17
         X=
                                Y=
                                      23.0000000
18
         X=
                0.2867000
                               Y=
                                      32.0000000
19
         X=
                0.3125000
                                Y=
                                      34.0000000
20
         X=
                0.3859000
                                Y=
                                      48,0000000
21
         X=
                 0.4557000
                                Y=
                                      40.0000000
22
         X=
                0.5233000
                                      72.0000000
                                Y=
23
                0.5395000
         X=
                                Y=
                                      34.0000000
24
         X=
                0.7161000
                                Y=
                                     108.0000000
25
         X=
                 0.7673000
                                Y=
                                     120.0000000
```

```
Shot 2, Pin Box Data
IRESET-A, 24-in, R (in) vs. T (ms):
                                Y≖
                                        0.0000000
         X=
                 0.0608000
 1
 2
         X=
                 0.0660000
                                Y=
                                        1.0000000
                 0.0700000
                                        2.0000000
 3
                                Υ=
         X=
 4
                                Y=
                                        4.0000000
                 0.0800000
         X=
                                Y=
 5
                                        5.0000000
                 0.0852000
         X=
 6
         X=
                 0.0906000
                                Y=
                                        4.0000000
 7
                 0.1030000
                                Y≔
                                        7.0000000
         X=
                                Y=
                                        8.0000000
 8
                 0.1024000
         X=
 9
                 0.1103000
                                Y=
                                        9.0000000
         X=
10
         X=
                 0.1294000
                                Y=
                                       11.0000000
11
         X =
                 0.1384000
                                Y≖
                                       12.0000000
12
         XΞ
                 0.1532000
                                Y=
                                       14.0000000
                                Y=
                                       14.0000000
13
         X=
                 0.1448000
                 0.1826000
                                Y=
                                       18.0000000
14
         X=
15
         X=
                 0.1738000
                                Y=
                                       20.0000000
         X=
                 0.2276000
                                Y=
                                       24.0000000
16
17
         X=
                 0.2546000
                                Y=
                                       28.0000000
18
         X=
                 0.2752000
                                Y=
                                       32.0000000
                                       34.0000000
19
         X=
                 0.3064000
                                Y=
                                Y=
                                       42.000000
20
         X=
                 0.3414000
         X=
                 0.3808000
                                Y=
                                       48.0000000
21
         X=
22
                 0.4516000
                                Υ=
                                       40.0000000
                                       72.0000000
23
                 0.5182000
                                Y=
         X=
24
                                Y=
                                       84.0000000
         X=
                 0.5860000
25
                                       24.0000000
         X=
                 0.4504000
                                Y=
26
         X=
                 0.7755000
                                Y=
                                      120.0000000
```

```
Shot 2 Averaged Data
IRESET-A, 24-in, R (in) vs. T (ms):
                                        0.0000000
                 0.0599000
                                Y=
         X=
 1
                                Y=
                                        1.0000000
2
                 0.0638750
         X=
                                Υ=
                                        2.0000000
 3
                 0.0675250
         X=
                                        3.0000000
                 0.0720750
                                Y=
 4
         X=
                                        4.0000000
                                Y=
                 0.0802750
 5
         X=
                                        5.0000000
                 0.0827750
                                Y=
 6
         X=
                 0.0910250
                                Y=
                                        6.0000000
 7
         X=
 8
         X=
                 0.1009250
                                Y=
                                        7.0000000
                                        8.0000000
                 0.1044750
 9
         X=
                                Y=
                                        9.0000000
10
         X=
                 0.1141000
                                Y=
                                       10.0000000
                 0.1214750
         X=
                                Y=
11
                                       11.0000000
                 0.1286500
                                Y=
         X=
12
                 0.1370500
                                       12,0000000
                                Y=
         X=
13
                                       14.0000000
                 0.1528250
                                Y=
         X=
14
                                       16.0000000
                                Y≖
         X=
                 0.1664500
15
                                       18.000000
                 0.1805917
                                Y=
         X=
16
                                       20,0000000
                 0.1924333
                                Y=
         X=
17
                                Y=
                                       22,0000000
                 0.2083750
         X=
18
                                Υ=
                                       24.0000000
19
                 0.2270000
         X=
                                       28.0000000
                 0.2535000
                                Y=
         X=
20
                 0.2773500
                                Y=
                                       32.0000000
         X=
21
                                Υ=
                                       36.0000000
         X=
                 0,3060500
22
                                       42.0000000
                 0.3414344
                                Y=
23
         X=
                                       48.0000000
                 0.3791188
                                Y=
24
         X=
                                       60.0000000
25
                 0.4494875
                                Y=
         X=
                 0.5172063
                                       72.0000000
                                Υ=
         X=
26
                                       34.0000000
                 0.5351750
                                Y=
27
         X=
                                       96.000000
                                Υ=
                 0.6495750
         X=
28
                                Y=
                                      108.0000000
                 0.7130750
29
         X=
                                      120.0000000
```

0.7735500

30

X=

Y=

```
Shot 3 Gage A Data
IRESET-A, 36-in, R (in) vs. T (ms):
                                         0.0000000
                                  Y=
  1
2
                  2.1239000
                                         6.0000000
                                  Y=
          X=
                  2.1395000
                                        12.0000000
                                  Y=
  3
                  2.1699000
          XΞ
                                        18.0000000
                  2.2029000
                                  Y=
  4
          Х≖
                                  Y=
                                        24.0000000
                  2.2281000
  5
          λ=
                                        27.0000000
                                  Y=
                  2.2453000
  6
          X≃
                                        30.0000000
                                  Y=
          χ=
                  2.2583000
  7
                                         33.0000000
                                  Y=
  8
          X=
                  2.2713000
                                        42.0000000
                                  Y=
  9
                  2.3079000
          X=
                                         48.0000000
                                  Y=
                  2.3387000
 10
          XΞ
                                        54.0000000
                                  Y=
                  2.3595000
 11
          χ=
                                  Y=
                                         60.0000000
 12
                  2.3829000
          χ=
                                         66.0000000
                  2.4139000
                                  Y=
 13
          χ=
                                         72.0000000
                                  Y=
 14
                  2.4367000
          χ=
                                  Y=
                                         84.0000000
                  2.4883000
 15
          Χ≃
                                  Y=
                                         96.0000000
 1ő
          X≠
                  2.5363000
                                       108.0000000
                                  Y=
                  2.5815000
 17
          χ=
                                        120.0000000
                                  Y=
                  2.6315000
 18
          X=
                                  Y=
                                        132.0000000
 19
          XΞ
                  2.6781000
                                  Υ=
                                        150.0000000
                  2.7485000
 20
          X≠
                                  γ=
                                        156.0000000
 21
                  2.7731000
          X=
                                  Y=
                                        168.0000000
                  2.8159000
 22
           X=
                  2.8443000
                                  YΞ
                                        174.0000000
 23
          X=
                  2.8675000
                                  Y=
                                        180.0000000
  24
           χ=
                                        192.0000000
                                  Y=
                  2.9141000
  25
           X≖
                                        216.0000000
                                  Υ=
                  3.0081000
  26
           XΞ
                                        222.0000000
                                  Y=
                  3.0309000
 27
           X=
                                        228.0000000
                   3.0541000
                                  Y=
  28
           χ=
```

```
Shot 3 Gage B Data
IRESET-A, 36-in, R (in) vs. T (ms):
                  2.1323000
                                          3.5000000
          X=
                                  Y=
  2
                                  Y=
          X=
                  2.1479000
                                          7.4999600
  3
                                         10.4999600
          X=
                  2.1647000
                                  Y=
  4
          X=
                  2.1775000
                                  Y=
                                         13.4999600
  5
          X=
                  2.1941000
                                  Y=
                                         16.4999600
          X=
                                  Y=
                  2.2095000
                                         19.4999600
  7
          X=
                  2.2241000
                                  Y=
                                         22.4999600
  8
          XΞ
                  2.2349000
                                  Y=
                                         25.4999600
  9
          X=
                  2.2467000
                                  Υ×
                                        27.5000000
 10
          XΞ
                  2.2503000
                                  Y=
                                         28.4999600
 11
                  2.2733000
          X=
                                  Y=
                                         34.4999600
 12
          X=
                  2.3065000
                                  Y=
                                         41.4999200
 13
          χ=
                  2.3323000
                                  Y=
                                         47.4999200
 14
          X≈
                  2.3575000
                                  Y=
                                         53.4999200
 15
          χ=
                  2.3883000
                                  Y=
                                        59.4999200
 10
          X=
                  2.4015000
                                  Y=
                                         63.5000000
 17
          χ=
                                  Y≖
                  2.4517000
                                         75.5000000
 18
          χ=
                                  Y=
                  2.4663000
                                         79.4999600
 19
          X=
                  2.4989000
                                  Y=
                                        87.5000000
 20
          χ=
                                  Y=
                  2.5459000
                                        99.5000000
 21
          X=
                  2.5591000
                                  Y≖
                                       103.4999600
 22
          X=
                                  Y=
                  2.5937000
                                       111.5000000
23
          X=
                  2.6057000
                                  Y=
                                       115.4999600
 24
                                  YΞ
          χ=
                  2.6439000
                                       123.5000000
 25
          X=
                                  Y=
                                       135.5000000
                  2.6911000
 26
          X=
                  2.7379000
                                  Y=
                                       147.5000000
 27
          X=
                  2.7851000
                                  Y≖
                                       159.5000000
 28
          XΞ
                  2.8797000
                                  Υ=
                                       183.5000000
 29
          X=
                  3.0219000
                                  Y=
                                       219.5000000
```

```
Shot 3 Gage C Data
IRESET-A, 36-in, R (in) vs. T (ms):
1 X= 2.1403000 Y=
                                          1.9999200
                                          4.9999200
          χ=
                  2.1527000
                                  Y=
  3
          χ=
                  2.2107000
                                  Y=
                                        16.9999200
  4
          X=
                  2.2231000
                                  Y=
                                        19.9999200
  5
                  2.2459000
                                  Y=
                                        24.0000000
          X=
                  2.2901000
                                  Y=
                                        34.9999200
          χ=
  78
                  2.2975000
                                  γ=
                                        36.0000000
          X=
                                        39.9999600
                                  Y=
          χ=
                  2.3139000
  9
          χ=
                  2.4023000
                                  Y≖
                                        60.0000000
 10
                  2.4133000
                                  Y=
                                        63.9999600
          X=
 11
                                        69.9999600
          X=
                  2.4403000
                                 Y=
 12
                                  Y=
          χ=
                  2.5733000
                                       103.9999200
 13
          X=
                  2.5947000
                                  Y=
                                       108.0000000
                                  Y=
 14
          χ=
                  2.6877000
                                       132.0000000
 15
          χ=
                                 Y=
                                       144.0000000
                  2.7341000
 16
          χ=
                  2.8285000
                                  Y=
                                       168.0000000
 17
                                 Y=
                                       180.0000000
          χ=
                  2.8755000
 18
          χ=
                  2.9219000
                                 Y=
                                       192.0000000
 19
          χ=
                  2.9717000
                                 Y=
                                       204.0000000
 20
          χ=
                  3.0173000
                                  Y=
                                       216.0000000
```

```
Shot 3 Gage D Data
IRESET-A, 36-in, R (in) vs. T (ms):
                  2.1283000
                                 Y=
                                         0.0000000
  1
          χ=
  2
          X=
                  2.1319000
                                 Y=
                                         3.0000000
  3
          χ=
                  2.1445000
                                 Y=
                                         6.0000000
  4
          χ=
                  2.1561000
                                 Y=
                                         9.0000000
  5
          X=
                  2.1743000
                                 Y=
                                        12.0000000
  6
          X=
                  2.1877000
                                 Y≖
                                        15.0000000
  7
          X=
                  2.2031000
                                 Y=
                                        18.0000000
  8
          X=
                  2.2193000
                                 Y=
                                        21.0000000
  9
                                 Y=
          X=
                  2.2333000
                                        24.0000000
 10
          X=
                  2.2479000
                                 Y=
                                        27.0000000
 11
                  2.2751000
                                 Υ=
                                        33.0000000
          X=
 12
                                 Y=
          χ=
                  2.2861000
                                        36.0000000
 13
                                 Y=
          X=
                  2.3109000
                                        42.0000000
 14
                                 YΞ
          χ=
                  2.3395000
                                        48.0000000
 15
          X≃
                  2.3661000
                                 Y=
                                        54.0000000
 16
          X=
                  2.3899000
                                 Y=
                                        60.0000000
 17
                                 Y≖
          χ=
                  2.6753000
                                       132.0000000
 18
                                 Y=
          χ=
                  2.7009000
                                       138.0000000
 19
                                 Y=
          χ=
                  2.7711000
                                       156.0000000
 20
                                 Y=
          X=
                  2.7959000
                                       162.0000000
 21
          X=
                  2.8181000
                                 Υ=
                                       168.0000000
 22
          χ=
                                 Y≖
                                       180.0000000
                  2.8667000
 23
                                 Y=
          XΞ
                  2.8897000
                                       186.0000000
 24
          χ=
                  2.9137000
                                 Y=
                                       192.0000000
 25
          X=
                  2.9607000
                                 Y=
                                       204.0000000
 26
          X=
                  3.0531000
                                 Y=
                                       228.0000000
 27
          χ=
                  3.0761000
                                 Y=
                                       234.0000000
```

```
Shot 3 Gage E Data
IRESET-A, 36-in, R (in) vs. T (ms):
                                         0.0000000
  1 2
          X≈
                 2.1205000
                                 Y=
                                 Y=
                                        36.0000000
          XΞ
                 2.2945000
  3
          χ=
                  2.3977000
                                 Y≖
                                        60.0000000
          X=
                  2.4455000
                                 Υz
                                        72.0000000
  5
          X=
                  2.5867000
                                 Y≖
                                       108.0000000
  6
          X=
                  2.6351000
                                 YΞ
                                       120.0000000
  7
          X=
                  2.7561000
                                 Y=
                                       150.0000000
  8
          X×
                  2.8019000
                                 Y=
                                       162.0000000
  9
          χ=
                                 YΞ
                                       168.0000000
                  2.8251000
 10
          X=
                                 Y=
                                       174.0000000
                  2.8493000
 11
                                 Y≖
                                       183.9999600
          XΞ
                  2.8891000
                                       187.9999200
 12
          XΞ
                  2.9049000
                                 γ=
 13
          Х≃
                  2.9205000
                                 YΞ
                                       192.0000000
 14
                  2.9371000
                                 Y=
                                       195.9999600
          χ=
 15
                                 γ=
                                       204.0000000
          XΞ
                  2.9699000
                                       207.0000000
                                 YΞ
 16
          X=
                  2.9795000
 17
          χ=
                                 Y≖
                                       210.0000000
                  2.9899000
 18
          X=
                  3.0025000
                                       213.0000000
 19
          X≖
                  3.0107000
                                       216.0000000
 20
          XΞ
                                 Y≖
                                       223.9999200
                  3.0467000
 21
          X≖
                                 Y=
                                       225.9999600
                  3.0557000
 22
                  3.0623000
          XΞ
                                 YŒ
                                       228.0000000
                                 YΞ
 23
          XΞ
                  3.0719000
                                       229.9999200
 24
          X≖
                  3.0783000
                                 Y=
                                       231.9999600
```

END

FILMED

3-86

DTIC